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Perturbation Methods in Stability and Norm Analysis of
Spatially Periodic Systems

Makan Fardad and Bassam Bamieh

Abstract

We consider systems governed by partial differential equations with spatially periodic coefficients over un-
bounded domains. These spatially periodic systems are considered as perturbations of spatially invariant ones, and
we develop perturbation methods to study their stability andH2 system norm. The operator Lyapunov equations
characterizing theH2 norm are studied using a special frequency representation, and formulae are given for the
perturbation expansion of their solution. The structure of these equations allows for a recursive method for solving
for the expansion terms. Our analysis provides conditions that capture possible resonances between the periodic
coefficients and the spatially invariant part of the system. These conditions can be regarded as useful guidelines
when spatially periodic coefficients are to be designed to increase/decrease theH2 norm of a spatially distributed
system. The developed perturbation framework also gives simple conditions for checking exponential stability.

I. I NTRODUCTION

The terms distributed-parameter and infinite-dimensional are used to describe those systems in which the state
belongs to an infinite dimensional vector space [1]. Such systems include, but are not limited to, time-delay
(retarded) and spatially distributed systems [2]. The latter includes systems in which the dynamics are governed
by Partial Differential Equations (PDEs) and it is a subclass of these systems that will be the subject of this study.
More specifically, we will analyze certain properties of spatially distributed systems in which the underlying PDEs
have spatially periodic coefficients. We refer to such systems asspatially periodic. Spatially periodic systems have
many real life applications, for example, in boundary layer and channel flow problems with corrugated walls and
in nonlinear optics.

Our motivation for this work is to study the effect of spatially periodic coefficients on stability and system
norms of spatially distributed systems. This can be thought of as using the periodic coefficients as static feedback
controls for spatially distributed systems. For example, in flow control problems where one introduces corrugated
wall geometries or spatially periodic body forces, the PDEs that describe the resulting flow dynamics have periodic
coefficients that are related to either the wall shapes or the spatially distributed body forces. An important objective
is to “design” such wall shapes or body forces to obtain certain stability or instability properties of the resulting
dynamics. There are currently no systematic methods for achieving this.

An analogy can be made between the present work and the use of time-periodic coefficients in Ordinary
Differential Equations (ODEs). It is known that the introduction of time-periodic coefficients in ODEs with
constant coefficients can change the stability properties of the Linear Time Invariant (LTI) system described by
the original ODE. A useful picture is to think of an ODE with periodic coefficients as an LTI system modified
by time-periodic (memoryless) feedback. It is known that certain unstable LTI systems can be stabilized by being
put in feedback with periodic gains of properly designed amplitudes and frequencies [3]. This can be roughly
considered as an example of “vibrational control” [4]. On the other hand, certain stable or neutrally stable LTI
systems can be destabilized by periodic feedback gains. This is sometimes referred to as “parametric resonance”
in the dynamical systems literature [3]. In the above scenarios, the stabilization/destabilization process depends in
subtle ways on “resonances” between the natural modes of the LTI subsystem and the frequency and amplitude
of the periodic feedback. Although Floquet analysis can be used to ascertain stability of the resulting periodic
systems, it is cumbersome to use fordesigning the periodic coefficients. This requires an exhaustive search
over frequencies and amplitudes of the periodic coefficients. Alternatively, simple resonance conditions can be
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derived using a perturbation analysis [3], which in turn can be used for a preliminary selection of the coefficient’s
frequency. In this way, perturbation analysis serves as a useful design tool.

In related recent work [5] we developed computational tools to study stability and system norms for spatially
periodic systems. However, for problems where the spatially periodic coefficients are to be designed, using these
tools involves a computationally expensive search over spatial frequencies and amplitudes of the coefficients.
Therefore, our aim in the present work is to develop a perturbation analysis that can be used to derive resonance
conditions and provide a useful design tool in a similar manner to the case of ODEs discussed earlier. These
resonance conditions can then identify candidate spatial frequencies to be used for the periodic coefficients. The
exact behavior with respect to amplitudes can then be ascertained using the full analysis of [5]. In this manner
we reduce the dimension of the search space required for design problems.

Another challenging problem is checking the stability of a spatially periodic, or in general, any infinite-
dimensional system. It is well-known that for a finite-dimensional LTI system, the spectrum of the infinitesimal
generator (i.e., theA-matrix) being contained in the open left half of the complex plane is equivalent to exponential
stability. In this sense the spectrum of the infinitesimal generator determines stability. Therefore it is said that
the system satisfies theSpectrum Determined Growth Condition(SDGC). But the SDGC may not hold for some
infinite-dimensional LTI systems; indeed the evolution can grow exponentially even though the infinitesimal
generator (theA-operator) has spectrum inside the left half of the complex plane [6]–[8]. In the present work we
use perturbation analysis to find simple conditions under which the spatially periodic system satisfies the SDGC
and is exponentially stable.

Our presentation is organized as follows. Section II outlines the main results of the paper. Section III briefly
reviews the frequency representation of spatially periodic operators. Section IV introduces the problem setup.
Section V discusses the analytic perturbation of theH2-norm and Section VI provides related illustrative examples.
Section VII studies conditions under which a spatially periodic system is exponentially stable. Many proofs and
technical details have been relegated to the Appendix to improve readability.

Notation

We usek ∈ R to characterize the spatial-frequency variable, also known as thewave-number. Σ(T ) is the
spectrum of the operatorT , and Σp(T ) its point spectrum,ρ(T ) its resolvent set, andR(ζ, T ) its resolvent
operator(ζ − T )−1. C− denotes all complex numbers with real part less than zero, andj :=

√
−1. ‘*’ denotes

the complex-conjugate transpose, and also the adjoint of a linear operator.S is the closure of the setS ⊂ C. We
will use the same notationA for an operator and it’s kernel representation. The spatio-temporal functionu(t, x)
(operatorA) is denoted byû(t, k) (respectivelyÂ) after the application of a Fourier transform on the spatial
variablex. Where there is no chance of confusion, we use the same notation for a spatially invariant operator
and its Fourier symbol.

Terminology

Throughout the paper, we use the termsspatial ‘operators’ and spatial ‘systems’. By the former, we mean
a purely spatialsystem with no temporal dynamics (i.e. a memoryless operator that acts on a spatial function
and yields a spatial function), whereas the latter refers to aspatio-temporalsystem (a system with an internal
state evolves on some spatial domain, i.e., for every timet the state is a function on a spatial domain). When
spatially periodic feedback operators are small in norm, we will use the phrasesperiodic feedbackandperiodic
perturbation interchangeably. We use the termpure point spectrum(or equivalentlydiscrete spectrum) to mean
that the spectrum of an operator consists entirely ofisolatedeigenvalues [9]. By ascalar system, we mean that
the Euclidean dimension of the state is equal to one.

II. M AIN RESULTS

We consider systems described by linear, time-invariant, integro partial differential equations defined on an
unbounded one dimensional domain. We use a standard state-space representation of the form

[∂t ψ](t, x) = [Aψ](t, x) + [B u](t, x),
y(t, x) = [C ψ](t, x), (1)
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wheret ∈ [0,∞) andx ∈ R, ψ, u, y are spatio-temporal functions, andA, B, C are spatial integro-differential
operators with coefficients that are periodic functions with a common periodX. We refer to such systems as
spatially periodic.

It is often physically meaningful to regard the spatially periodic operators as additive or multiplicative per-
turbations of spatially invariant ones [and by spatially invariant we mean integro-differential operators with
constant coefficients]. For example, the generator in (1) can often be decomposed asA = Ao + εE, where
Ao is a spatially invariant operator andE is an operator that includes multiplication by periodic functions. In
some control applications, the operatorE is something to be “designed”. Therefore it is desirable to have easily
verifiable conditions for stability and norms of such systems. This would then allow for the selection of the spatial
period and amplitude ofE to achieve the desired behavior. The perturbation analysis we present, though limited
to small values ofε, provides useful results for selecting candidate “periods” forE.

Our analysis and results are derived using a special frequency representation. We show that the spatial periodicity
of the operatorsA, B andC implies that (1) can be rewritten as

[∂t ψθ](t) = [Aθ ψθ](t) + [Bθ uθ](t),
yθ(t) = [Cθ ψθ](t), (2)

where θ ∈ [0, 2π/X); for every value ofθ, ψθ, uθ, yθ are bi-infintie vectors, andAθ, Bθ, Cθ are bi-infinite
matrices. The systems (2) and (1) are related through a unitary transformation, and in particular quadratic forms
and norms are preserved by this transformation. Consequently, stability and quadratic norm properties of (2) and
(1) are equivalent. With this transformation, the analysis of the original system (1) is reduced to that of the family
of systems (2) that aredecoupledin the parameterθ. In particular, perturbation analysis for (2) is easier and less
technical than that for the original system (1).

To make for easier reading we first present the results on perturbation analysis of theH2-norm, and then deal
with the issue of stability.

For a large class of infinite-dimensional systems, computing theH2-norm involves solving anoperatoralgebraic
Lyapunov equation

AP + P A∗ = −BB∗.

In general this is a difficult task that must be done using appropriate discretization techniques. However, in the
case whenA andB are spatially periodic operators, then so is the solutionP . Thus the frequency representation
implies that this operator Lypunov equation is equivalent to the decoupled family of matrix Lyapunov equations

Aθ Pθ + PθA∗θ = −Bθ B∗θ , (3)

whereAθ,Bθ andPθ are the bi-infinite matrix representations ofA, B andP . OncePθ is found, theH2-norm
of the system can be computed from [5]

1
2π

∫ Ω

0

trace[CθPθ C∗θ ] dθ, Ω = 2π/X.

Solving (3) is still a difficult problem in general since it involves bi-infinite matrices. We use perturbation
analysis as follows: the generator is expressed asAθ = Ao

θ + ε Eθ whereAo
θ andEθ correspond to the spatially

invariant and spatially periodic components respectively. It follows that the solutionPθ is analytic inε and the
terms of its power series expansion (denoted byP(i)

θ ) satisfy a sequence of forward coupled Lyapunov equations.
Furthermore, the termsP(i)

θ are banded matrices, with the number of bands increasing with the indexi. These
Lyapunov equations can then be solved recursively fori = 0, 1, 2, . . . . Formulae for these representations and
the corresponding sequence of Lyapunov equations are given in Section V. In some examples that we present
in Section VI, these formulae lead to simple “resonance” conditions for stabilization or destabilization of PDEs
using spatially periodic feedback.

The second set of results concern the problem of stability. As mentioned in the Introduction, whenA is
an infinite-dimensional operator it is possible that its spectrumΣ(A) lies inside C−, and yet‖eAt‖ grows
exponentially [6]–[8]. In such cases it is said that thespectrum-determined growth conditionis not satisfied [8].
Yet there exists a wide range of infinite-dimensional systems for which the spectrum-determined growth condition
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Fig. 1. Left: Pictorial representation of̂φ(k̄) =
R

R Â(k̄, κ) ψ̂(κ) dκ. Right: The frequency kernel̂A of a spatially periodic operatorA.

is satisfied. These include (but are not limited to) systems for which theA-operator issectorial (also known as
an operator which generates aholomorphicor analytic semigroup) [9]–[11] or is aReisz-spectraloperator [2]. In
this paper we focus on sectorial operators.

Thus to establish exponential stability of a system, one possibility would be to show simultaneously that

(i) A is sectorial,
(ii) Σ(A) lies in C−.

But this still does not make the problem trivial. In fact proving that an infinite-dimensional operator is sectorial,
and then finding its spectrum, can in general be extremely difficult.

Once again we use perturbation methods to show (i) and (ii). We considerA to have the formA = Ao + εE
whereAo is a spatially invariant operator,E is a spatially periodic operator, andε is a small complex scalar.
Using the bi-infinite matrix representation, we first find conditions on the spatially invariant operatorAo such
that (i) and (ii) are satisfied. We then show that (i) and (ii) willremain satisfied ifε is small enough and if the
spatially periodic operatorE is ‘weaker’ thanAo (in the sense thatE is relatively bounded with respect toAo).
The utility of this approach is that (i) and (ii) are much easier to check for a spatially invariant operator than they
are for a spatially periodic one.

III. F REQUENCYREPRESENTATION OFPERIODIC OPERATORS

In this section we briefly discuss the frequency domain representation of spatially periodicoperators. We then
show how this representation can be used to convert a spatially periodicsysteminto a family of matrix-valued
LTI systems. For a detailed account the reader is referred to [5] and [12].

Let ψ̂(k) andφ̂(k) denote the Fourier transforms of two spatial functionsψ(x) andφ(x) respectively. Ifψ and
φ are related by a linear operator,φ = Aψ, then so arêψ and φ̂ and we have

φ(x) =
∫

R
A(x, χ)ψ(χ) dχ Fx←→ φ̂(k) =

∫
R
Â(k, κ) ψ̂(κ) dκ (4)

whereA and Â are kernel functionsin the spatial and Fourier domains, respectively; see Figure 1 (left). It is
shown in [5] [12] that the most general spatially periodic operatorA with spatial periodX = 2π/Ω can be
represented in the Fourier domain as an operator with a kernel function of the form

Â(k, κ) =
∑
l∈Z

Âl(k) δ(k − κ− Ωl). (5)

Thus the kernel function corresponding tôA is composed of parallel and equally-spaced ‘impulse sheets’ which
can be visualized in Figure 1 (right). [5] further describes how the particular structure (5) ofÂ allows (4) to be
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given a matrix representation

.

.

.

φ̂(θ−Ω)

φ̂(θ)

φ̂(θ+Ω)

.

.

.


=



.
.
.

.
.
.

.
.
.

.
.
.

.
.
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ψ̂(θ−Ω)

ψ̂(θ)

ψ̂(θ+Ω)

.

.

.


, θ ∈ [0,Ω), (6)

for which we adopt the notation
φθ = Aθ ψθ.

In other words, a general spatially periodic operatorA can be described by a family of (bi-infinite) matricesAθ

parameterized by a variableθ.
Remark 1:We emphasize that thêAl( · ) in (5) and (6) can be matrices. Thus, in general,Aθ has a “block”

structure. But throughout this paper and for the sake of simplicity, we choose not to explicitly refer to this block
structure, even though all our results hold for matrix-valuedÂl( · ). In the same light, we do not refer directly to
the Euclidean dimension of the vectorŝψ( · ) and φ̂( · ).

Spatially invariant [13] and spatially periodic pure multiplicationoperators constitute special subclasses of
spatially periodic operators. In the framework established above,Aθ is diagonal for spatially invariant operators,
andToeplitzfor periodic pure multiplication operators.

Example 1:A = ∂x andF (x) = cos(Ωx) have the following representations

Aθ =

 . . .
jθ+jΩn

. . .

, F =


. . .

. . .

. . . 0 1
2

1
2

0
. . .

. . .
. . .

,
for every θ ∈ [0,Ω), respectively. Notice that sinceA is spatially invariant, it is fully described by itsFourier
symbolÂ0(k) = jk, k ∈ R. And it is the samples of̂A0( · ) that make up the diagonal ofAθ for every θ. We
have dropped theθ subscript inF , as it is independent of this variable.

Remark 2: It is possible to define a unitary operatorMθ [5] such thatψθ = Mθ ψ̂, φθ = Mθ φ̂, and thus
Aθ = Mθ ÂM ∗

θ . Mθ is equivalent to thefrequency domain liftingoperation of [14] and [15] (see also [16]). By
the unitary property of the lifting operator it follows that∑

l∈Z

∫
R

trace[Âl(k) Â∗l (k)] dk =
∫ Ω

0

trace[AθA∗θ] dθ =
∫ Ω

0

‖Aθ‖2HS dθ, (7)

with ‖T‖2HS := trace[T T ∗] being the square of the Hilbert-Schmidt norm1 of T .
Finally, given a spatially periodic system in state-space form (1) with spatially periodicA, B, andC, one can

replace each of these operators with its bi-infinite matrix representation to obtain the family LTI systems (2).
Example 2:Consider the spatially periodic heat equation onx ∈ R

∂t ψ(t, x) =
(
∂2

x − α cos(Ωx)
)
ψ(t, x) + u(t, x),

y(t, x) = ψ(t, x), (8)

with realα 6= 0 andΩ > 0.2 ClearlyA = ∂2
x + α cos(Ωx) with domain

D = {φ ∈ L2(R) | φ, dφ
dx

absolutely continuous,
d2φ

dx2
∈ L2(R)},

1The Hilbert-Schmidt norm of an operator is a generalization of the Frobenius norm of finite-dimensional matrices‖A‖2F =P
m,n |amn|2 = trace[AA∗].
2By ∂tψ(t, x) and∂2

xψ(t, x) we mean the spatio-temporal functions∂tψ and∂2
xψ evaluated at the point(t, x).
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B = C = δ(x) are the identity convolution operator onL2(R). Rewriting the system in its matrix representation

∂t ψθ(t) = Aθ ψθ(t) + Bθ uθ(t),
yθ(t) = Cθ ψθ(t), (9)

with

Aθ =


...
−(θ + Ωn)2

...

− α


. . .

. . .

. . . 0 1
2

1
2

0
. . .

. . .
. . .

, Bθ = Cθ =


...

1
...

 , (10)

Gθ(ω) := Cθ (jωI − Aθ)−1Bθ =



. . .
. . .

. . .
. . . α

2

α
2

jω+(θ+Ωn)2 α
2

α
2

. . .
. . .

. . .
. . .



−1

. (11)

Notice that (9)–(10) is now fully decoupled in the variableθ. In other words, (8) is equivalent to the family of
state-space representations (9)–(10), and transfer function (11), all parameterized by the variableθ ∈ [0,Ω).

IV. PROBLEM SETUP

Let us now consider a system of the form

∂t ψ(t, x) = Aψ(t, x) + B u(t, x)
=

(
Ao + Bo ε F Co

)
ψ(t, x) + B u(t, x), (12)

y(t, x) = C ψ(t, x),

wheret ∈ [0,∞) andx ∈ R with the following assumptions. The (possibly unbounded) operatorsAo, Bo, Co are
spatially invariant, and the bounded operatorsB, C are spatially periodic.F (x) = 2L cos(Ωx) with L a constant
matrix, andε is a complex scalar.Ao, Bo, Co andE := BoF Co are all defined on a dense domainD ⊂ L2(R)
and are closed.u, y, andψ are the spatio-temporal input, output, and state of the system, respectively. We will
refer toA as theinfinitesimal generatorof the system.

Comment on Notation:To avoid clutter, we henceforth drop the “ˆ ” on the Fourier symbol of operators and
frequency domain functions. For example, we useA0( · ) [instead ofÂ0( · )] to represent the Fourier symbol of
the spatially invariant operatorAo.

As shown in detail in [5] and also briefly in the previous section, the system can be represented in the (spatial)
Fourier domain by the family of systems

∂t ψθ(t) = Aθ ψθ(t) + Bθ uθ(t)
=

(
Ao

θ + εBo
θ F Co

θ

)
ψθ(t) + Bθ uθ(t) (13)

yθ(t) = Cθ ψθ(t),

parameterized byθ ∈ [0,Ω). HereBθ andCθ have the general form of the operator in (6) [i.e. can possess any
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Fig. 2. Go has a spatially invariant infinitesimal generatorAo. The LFT ofGo and the spatially periodic multiplication operatorεF yields
a system which has a spatially periodic infinitesimal generatorA.

number of nonzero sbudiagonals],F has the form given in Example 1 with12 replaced byL, and

Ao
θ =

 . . .
A0(θn)

. . .

, Bo
θ =

 . . .
Bo(θn)

. . .

, Co
θ =

 . . .
Co(θn)

. . .

, Eθ := Bo
θ F Co

θ =


. . .

. . .

. . . 0 A−1(θn)

A1(θn) 0
. . .

. . .
. . .

 (14)

with θn := θ + Ωn, n ∈ Z, and

A1( · ) := Bo( · )LCo( · − Ω), A−1( · ) := Bo( · )LCo( · + Ω). (15)

We emphasize that the convention used in the representation ofEθ in (14) is the same as that used in (6); for
example thenth row of Eθ is {· · · , 0, A1(θn), 0, A−1(θn), 0, · · · }.

Remark 3:We note that takingF (x) to be a pure cosine is not restrictive. The results obtained here can
be easily extended to problems whereF (x) is any periodic function with absolutely convergent Fourier series
coefficients. The inclusion of higher harmonics ofΩ in F (x), namely functions of frequency2Ω, 3Ω, etc, would
not reveal new interesting phenomena and would only complicate the algebra.

Remark 4:The system (12) can be considered as the LFT (linear fractional transformation [17]) of a spatially
periodic systemGo with spatially invariant infinitesimal generatorAo,

Go =

 Ao B Bo

C 0 0
Co 0 0


and the (memoryless and bounded) spatially periodic pure multiplication operatorε F (x) = ε 2L cos(Ωx), see
Figure 2.

Stability Analysis and Sectorial Operators

It is shown in [5] that for a general spatially periodic operatorA we have

Σ(A) =
⋃

θ∈[0,Ω)

Σ(Aθ). (16)

In the case whereA is spatially invariant [and thusAθ = diag {· · · , A0(θn), · · · }], (16) further simplifies to

Σ(A) =
⋃
k∈R

Σp(A0(k)). (17)

Example 3:Let A = −(∂2
x + κ2)2. ThenA0(k) = −(k2 − κ2)2, see Figure 3 (left). On the other hand, since

A0( · ) is scalar,Σp(A0(k)) = A0(k) for everyk. It is easy to see thatA0( · ) takes every real negative value and
thus from (17)A has thecontinuous spectrumΣ(A) = (−∞, 0 ], see Figure 3 (center).

Remark 5:WhenA is spatially invariant, a helpful way to think aboutΣ(A) in terms of its symbolA0 is
suggested by the previous example. First plotΣp(A0( · )) in the ‘complex-plane× spatial-frequency’ space, as in
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Fig. 3. Left: Representation of the symbolA0( · ) of Example 3 in ‘complex-plane×spatial-frequency’ space. Center:Σ(A) in the complex
plane. Right: For spatially invariantA, the (diagonal) elements ofAθ are samples of the Fourier symbolA0( · ).

Figure 3 (left) of Example 3. Then the orthogonal projection onto the complex plane of this plot would giveΣ(A),
as in Figure 3 (center). This can be considered as a geometric interpretation of (17). In Example 3, sinceA0( · )
is real scalar and takes only negative values, this projection yields only the negative real axis. But in general
if A0( · ) ∈ Cq×q, this projection would lead toq curves in the complex plane. Notice also that in this setting,
Σ(Aθ) is the projection onto the complex plane of samples ofΣp(A0( · )) taken atk = θn = θ + Ωn, n ∈ Z,
in the ‘complex-plane× spatial-frequency’ space. This can be considered as a geometric interpretation of (16).
Figure 3 (right) shows these samples in the ‘complex-plane× spatial-frequency’ space for a scalarA.

We next introduce a special subclass ofholomorphic(or analytic) semigroups. The reader is referred to [9]–
[11] for a detailed discussion. SupposeA is densely defined,ρ(A) contains a sector of the complex plane
| arg(z − α) | ≤ π

2 + γ, γ > 0, α ∈ R, and there exits someM > 0 such that

‖(zI −A)−1‖ ≤ M

|z − α|
for | arg(z − α) | ≤ π

2
+ γ. (18)

ThenA generates a holomorphic semigroup and we writeA ∈H (γ, α,M) [11] [9]. We say thatA is sectorial
if A belongs to someH (γ, α,M).

Finally, a semigroup is called exponentially stable if there exist positive constantsM and% such that [2]

‖eAt‖ ≤ M e−%t for t ≥ 0.

Theorem 1:Let A be sectorial. Then ifΣ(A) ⊂ C−, A generates an exponentially stable semigroup.
Proof: If A is sectorial it defines a holomorphic semigroup and thuseAt is differentiable fort > 0 [10]. Then

[8] shows that this is sufficient for the spectrum-determined growth condition to hold. In particular, ifΣ(A) ⊂ C−,
A generates an exponentially stable semigroup.

H2-Norm of Spatially Periodic Systems

We define theH2-norm of an exponentially stable spatially periodic systemG as

‖G‖2H2 =
1
2π

∫ Ω

0

∫ ∞

0

trace[Gθ(t)G∗θ (t)] dt dθ,

whereGθ(t) = Cθ eAθt Bθ is the impulse response of the system (13). The intuition for this definition and the
proof of the following theorem can be found in [5].

Theorem 2:Consider the exponentially stable spatially periodic LTI systemG, with spatial periodX = 2π/Ω
and state-space realization (12)–(13). We have

‖G‖2H2 =
1
2π

∫ Ω

0

trace[CθPθ C∗θ ] dθ =
1
2π

∫ Ω

0

trace[B∗θ Qθ Bθ] dθ,

wherePθ andQθ are the solutions of the (θ-parameterized) algebraic Lyapunov equations

Aθ Pθ + PθA∗θ = −Bθ B∗θ , A∗θ Qθ + QθAθ = −C∗θ Cθ.
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V. PERTURBATION ANALYSIS OF THEH2-NORM

The difficulty in calculating theH2-norm using Theorem 2, is that unlessAθ, Bθ andCθ are diagonal (i.e.,G
is a spatially invariant system), the operatorsPθ andQθ are “full”, meaning that they possessall of their (infinite
number of) subdiagonals. This makes the computation of theH2-norm numerically intensive. Namely, one has
to solve aninfinite-dimensionalalgebraic Lyapunov equation to find the operatorPθ (or Qθ) for every value of
θ ∈ [0,Ω). In this section we will see how one can use analytic perturbation techniques to compute theH2-norm
in a simple and numerically efficient way, and without having to explicitly find the fullPθ andQθ operators.
Such a perturbation analysis is very useful in predicting general trends and extracting valuable information about
theH2-norm.

Let us now consider the general setup of (12), where we takeε is a smallreal scalar. We also assume that both
Ao andA = Ao + εE define exponentially stable strongly continuous semigroups (also known asC0-semigroups)
onL2(R) [2], and thatB andC are spatially invariant operators. We are interested in the changes in theH2-norm
of this system for small magnitudes ofε and different values of the frequencyΩ.

Let us define
Pθ(ε) := P(0)

θ + εP(1)
θ + ε2 P(2)

θ + · · · ,

with P∗θ (ε) = Pθ(ε). Notice that this impliesP(m)∗
θ = P(m)

θ for all m = 0, 1, 2, · · · . Our aim is to findP(m)
θ by

solving the Lyapunov equation

Aθ(ε) Pθ(ε) + Pθ(ε)A∗θ(ε) ≡ −Bθ B∗θ (19)

⇓

(Ao
θ + ε Eθ) (P(0)

θ + εP(1)
θ + ε2 P(2)

θ + · · · ) + (20)

(P(0)
θ + εP(1)

θ + ε2 P(2)
θ + · · · ) (Ao

θ + ε Eθ)∗ ≡ −Bθ B∗θ ,

and compute theH2-norm of the system using Theorem 2

‖G‖2H2 =
1
2π

∫ Ω

0

trace[Cθ Pθ(ε) C∗θ ] dθ.

It is easy to see from (20) that

Ao
θ P

(0)
θ + P(0)

θ Ao∗
θ = −Bθ B∗θ , (21)

Ao
θ P

(1)
θ + P(1)

θ Ao∗
θ = −

(
Eθ P(0)

θ + P(0)
θ E∗θ

)
, (22)

Ao
θ P

(2)
θ + P(2)

θ Ao∗
θ = −

(
Eθ P(1)

θ + P(1)
θ E∗θ

)
, (23)

...

Now sinceAo
θ andBθ B∗θ are diagonal in (21), so isP(0)

θ . In (22), the right hand side operator has the structure of
being nonzero only on the first upper and lower subdiagonals, and henceP(1)

θ inherits the same structure (since
Ao

θ is diagonal). In the same manner, one can show thatP(2)
θ is only nonzero on the main diagonal and the second

upper and lower subdiagonals, and so on for otherP(m)
θ . We have

P(0)
θ =

 . . .
P0(θn)

. . .

, P(1)
θ =


. . .

. . .

. . . 0 P ∗1 (θn)

P1(θn) 0
. . .

. . .
. . .

, P(2)
θ =



. . .
. . .

. . .

. . .
. . . 0 P∗

2 (θn)

. . . 0 Q0(θn) 0
. . .

P2(θn) 0
. . .

. . .

. . .
. . .

. . .


, . . .



JANUARY 16, 2006 10

where thenth row of P(1)
θ is equal to{· · · , 0, P1(θn), 0, P ∗1 (θn), 0, · · · }, and thenth row of P(2)

θ is equal to
{· · · , 0, P2(θn), 0, Q0(θn), 0, P ∗2 (θn), 0, · · · }.

Remark 6: It is important to realize that, not only isP(m)
θ not a “full” operator, it has at mostm nonzero

upper and lower subdiagonals. Also, allP(m)
θ for oddm have zero diagonal and are thus trace-free operators.

Remark 7:Note that even thoughAθ = Ao
θ + ε Eθ has only one nonzero subdiagonal [see (14)],Pθ(ε) =

P(0)
θ + εP(1)

θ + · · · possesses all of its subdiagonals. This is precisely the reason why direct calculation ofPθ in
Theorem 2 is computationally difficult.

Now returning to (21)-(23),P(0)
θ , P(1)

θ andP(2)
θ are found by equating, element by element, the bi-infinite

matrices on both sides of these equations. For example, (21) leads to

A0(θ + Ωn)P0(θ + Ωn) + P0(θ + Ωn)A∗0(θ + Ωn) = −B(θ + Ωn)B∗(θ + Ωn)

for everyn ∈ Z, andθ ∈ [0,Ω). But notice that asn assumes values over all integers andθ changes in[0,Ω),
k = θ + Ωn takes all real values, and one can rewrite the above equation as

A0(k)P0(k) + P0(k)A∗0(k) = −B(k)B∗(k),

for all k ∈ R. Applying the same procedure to (22)-(23), one arrives at

A0(k)P0(k) + P0(k)A∗0(k) = −B(k)B∗(k), (24)

A0(k)P1(k) + P1(k)A∗0(k − Ω) = −
(
A1(k)P0(k − Ω) + P0(k)A∗−1(k − Ω)

)
, (25)

A0(k)Q0(k) + Q0(k)A∗0(k) = −
(
A1(k)P ∗1 (k) + P1(k)A∗1(k) + A−1(k)P1(k + Ω)

+ P ∗1 (k + Ω)A∗−1(k)
)
, (26)

and so on for all nonzero diagonals ofP(m)
θ , m = 3, 4, · · · .

Remark 8:Notice that from the above equations, one first findsP0( · ) from (24), thenP1( · ) from (25), and
so on. In other words, computing the subdiagonals ofPθ becomes “decoupled” in one direction. This decoupling
would not have been possible had we not employed a perturbation approach and had attempted to solve (19)
directly.

Returning to the calculation of theH2-norm, let us first separate the diagonal part ofP(2)
θ by rewriting it as

P(2)
θ = P(2)

θ + P̃(2)
θ , where

P(2)

θ :=

 . . .
Q0(θn)

. . .

,
and P̃(2)

θ contains the rest ofP(2)
θ . Clearly trace[Cθ P̃(2)

θ C∗θ ] = 0. Also, recall that

trace[Cθ P(2m+1)
θ C∗θ ] = 0, m = 0, 1, 2, · · · . (27)

Now one can write the following

‖G‖2H2 =
1
2π

∫ Ω

0

trace[Cθ Pθ(ε) C∗θ ] dθ

=
1
2π

∫ Ω

0

trace[Cθ P(0)
θ C∗θ + ε2 Cθ P(2)

θ C∗θ ] dθ + O(ε4)

=
1
2π

∫ Ω

0

trace[Cθ P(0)
θ C∗θ + ε2 Cθ P

(2)

θ C∗θ ] dθ + O(ε4),

where the absence of odd powers ofε is due to (27), and the last equation follows from the fact thattrace[Cθ P̃(2)
θ C∗θ ] =

0. Next, using the unitaryness of the lifting transform we have∫ Ω

0

trace[Cθ P(0)
θ C∗θ ] dθ =

∫ ∞

−∞
trace[C(k)P0(k)C∗(k)] dk,∫ Ω

0

trace[Cθ P
(2)

θ C∗θ ] dθ =
∫ ∞

−∞
trace[C(k)Q0(k)C∗(k)] dk,
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and we arrive at the final result

‖G‖2H2 =
1
2π

∫ ∞

−∞
trace[C(k)P0(k)C∗(k) + ε2 C(k)Q0(k)C∗(k)] dk + O(ε4). (28)

Remark 9:Let us stress again the important advantage of the above perturbation analysis in comparison to
the method of Theorem 2. In the direct method of computing theH2-norm proposed in Theorem 2, one has to
solve a family ofinfinite-dimensional(operator) algebraic Lyapunov equations, whereas the perturbation method
reduces theH2-norm computation to that of solving a family offinite-dimensional(matrix) Lyapunov/Sylvester
equations (24)-(26).
In summary, we have the following.

Main Result of Perturbation Analysis ofH2-Norm: Consider the exponentially stable spatially periodic LTI
systemG, with spatial periodX = 2π/Ω and state-space realization (12). Then for small values of|ε| theH2-
norm of the system (12) can be computed from (28), whereP0( · ) andQ0( · ) are solutions of the family of
finite-dimensional Lyapunov/Sylvester equations described by (24)-(26).

VI. EXAMPLES

As an application of the perturbation results of the previous section, we first investigate the occurrence of
‘parametric resonance’ for a class of spatially periodic systems. Parametric resonance occurs when a specific
frequencyΩres of the periodic perturbation resonates with some ‘natural frequency’κ of the unperturbed system,
leading to a local (inΩ) change in system behavior [3]. In the systems we consider in this section, this change
in behavior is captured by the value of theH2-norm.

Example 4:Let us consider the periodic PDE

∂t ψ = −(∂2
x + κ2)2 ψ − c ψ + ε cos(Ωx)ψ + u

y = ψ, (29)

with 0 6= κ ∈ R andc > 0. Comparing (29) and (12) we have

A0(k) = −(k2 − κ2)2 − c, Bo(k) = 1, Co(k) = 1, B(k) = 1, C(k) = 1, L =
1
2
.

For this system, the functionsP0(k) andQ0(k) of the previous section simplify to3

P0(k) =
−1

2A0(k)
, (30)

Q0(k) =
1(

A0(k)
)2

( −1
2A0(k − Ω)

+
−1

2A0(k + Ω)

)
(31)

= 4
(
P0(k)

)2(
P0(k − Ω) + P0(k + Ω)

)
,

and it is our aim to find theH2-norm

‖G‖2H2 =
1
2π

∫ ∞

−∞

(
P0(k) + ε2Q0(k)

)
dk + O(ε4), (32)

for different values of the parameterΩ > 0. More specifically, we are interested in the values ofΩ for which the
H2-norm is maximized.

From (30),P0(k) = 1
2

1
(k2−κ2)2+c . The first plot of Figure 4 showsP0( · ), while the second showsP0( · −Ω)

and P0( · + Ω) (dashed), for a given value ofΩ 6= 0. As Ω is increased,P0( · − Ω) slides to the right and
P0( · + Ω) to the left. From (31) it is clear that to findQ0( · ) for any Ω, one would sum the two functions in
the second plot and multiply the result by the square of the first plot. The interesting question now is, for what
value(s) ofΩ ∈ (0,∞) would theH2-norm in (32) be maximized.

3To findQ0(k) one needs to first findP1(k), but we have omitted the details for brevity.
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Fig. 4. Above: Plot ofP0( · ). Below: Plot ofP0( · − Ω) andP0( · + Ω) (dashed).
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Fig. 5. Left: Plots of Example 4 forκ = 1 and c = 0.1. Notice that the first graph is plotted againstk and the second againstΩ. Right:
The plot ofH2-norm of the same example, but calculated by taking large truncations of theAθ , Bθ , Cθ matrices and using Theorem 2.

One can easily see that asΩ → 0, the peaks ofP0( · − Ω) andP0( · + Ω) merge toward those of
(
P0( · )

)2
,

thus
∫∞
−∞Q0(k) dk grows and hence‖G‖2H2 grows.4 This is not surprizing; asΩ→ 0, the perturbation is tending

toward a constant functionF (x) = cos(Ωx) → 1. This results in shifting the whole spectrum ofAo toward the
right-half of the complex plane, thus increasing theH2-norm of the perturbed system.

But we are more interested in frequenciesΩ � 0 that lead to a local (inΩ) increase in theH2-norm. Now
notice that a different alignment of the peaks can also occur, which leads to another local maximum of theH2-
norm as a function ofΩ. This happens when the peak ofP0( · − Ω) at k = −κ + Ω becomes aligned with the
peak of

(
P0( · )

)2
at k = κ, and, simultaneously, the peak ofP0( · + Ω) at k = κ−Ω becomes aligned with the

peak of
(
P0( · )

)2
at k = −κ. Clearly this occurs when

−κ + Ωres = κ =⇒ Ωres = 2 κ.

This result agrees exactly with that obtained in [12], where in the analysis of the same problem it is shown that the
part of the spectrum ofA closest to the imaginary axis ‘resonates’ with perturbations whose frequency satisfies
the relationΩ = 2 κ.

Consider (29) withκ = 1 andc = 0.1. For this system
∫∞
−∞ P0(k) dk ≈ 4.74. Figure 5 (left) shows the graphs

of P0( · ) (plotted againstk) and
∫∞
−∞Q0(k) dk (plotted againstΩ). The peak atΩ = 2 in the lower plot verifies

the resultΩres = 2 κ obtained above.
Figure 5 (right) shows theH2-norm of this system computed by taking large enough truncations of theAθ,
Bθ, Cθ matrices and then applying Theorem 2. The figure shows that the trends were indeed correctly predicted
by the perturbation analysis; the peaks atΩ = 0, 2 correspond to those of

∫∞
−∞Q0(k) dk.

4Remember thatP0(k) is independent ofΩ, and thus
R∞
−∞ P0(k) dk remains constant for differentΩ.
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Fig. 6. The plot of Example 4 withκ = 1 andc = 0.1 and a purely imaginary perturbation.
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Fig. 7. Plot of Example 5 forκ = 1 andc = 0.1.

Now consider (29) withκ = 1 and c = 0.1, but with ε replaced byεj (i.e., a purely imaginary purturbation).
Obviously the unperturbed system remains the same as before and hence

∫∞
−∞ P0(k) dk ≈ 4.74. Figure 5 shows

the graph of
∫∞
−∞Q0(k) dk, which demonstrates that for this system the purely imaginary perturbation reduces

theH2-norm at all frequencies. We address the physical interpretation of such a perturbation in the Appendix.

We continue with more examples to demonstrate that by appropriately choosing the frequency of the perturba-
tion, one candecreaseor (as in the previous example) increase theH2-norm of the unperturbed system.

Example 5:Let us consider the periodic PDE [5]

∂t ψ = −(∂2
x + κ2)2 ψ − c ψ + ε cos(Ωx) ∂x ψ + u

y = ψ. (33)

Comparing (33) and (12) we have

A0(k) = −(k2 − κ2)2 − c, Bo(k) = 1, Co(k) = jk, B(k) = 1, C(k) = 1, L =
1
2
.

The difference between this system and (29) is that hereCo is a spatial derivative. The plot of Figure 7 demonstrates∫∞
−∞Q0(k) dk for κ = 1 and c = 0.1. Notice that the peak atΩres = 2 remains the same as in Figure 5, but

we now have a decrease at small frequencies. This is due to the derivative operatorCo = ∂x. Finally, notice the
agreement of the perturbation analysis here with the (non-perturbation) calculations for the same system in the
Third Example of SectionVII in [5]. Our perturbation methods correctly predict the increase atΩ = 2 and the
decrease aroundΩ ≈ 0.4 of theH2-norm.

Example 6:The following system is motivated by channel flow problems

A0(k) =

»
− 1

R
(k2 + c) 0
jk − 1

R
(k2 + c)

–

Bo(k) =
[

1 0
0 1

]
, Co(k) =

[
1 0
0 1

]
, B(k) =

[
1 0
0 0

]
, C(k) =

[
0 0
0 1

]
, L =

1
2

[
0 −1
1 0

]
.

We perform numerical calculations forR = 6, c = 1. We have
∫∞
−∞ trace[C(k)P0(k)C∗(k)] dk ≈ 20.72. Figure 8

shows that theH2-norm can be decreased by the the application of periodic perturbations with frequencyΩ ≈ 0.7.
It is interseting that if one uses the locations of the peaks in the first plot of Figure 8 to findκ = 0.75, then
from the peak atΩres = 1.6 in the second plot it seems that the relationshipΩres≈ 2κ = 1.5 still holds with an
acceptable error even for thisnon-scalarexample.
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Fig. 8. Graphs of Example 6 forR = 6 andc = 1.

VII. STABILITY AND THE SPECTRUM-DETERMINED GROWTH CONDITION

In the literature on semigroups, there exist examples in whichΣ(A) lies entirely insideC−, but ‖eAt‖ does not
decay exponetially; see [6] and more recently [7]. In such cases it is said that the semigroup does not satisfy the
spectrum-determined growth condition[8]. The determining factor in the examples presented in [6] and [7] can
be interpreted as the accumulation of the eigenvalues ofAθ around±j∞ in the form of Jordan blocks of ever-
increasing size (i.e. as the eigenvalues tend to±j∞ their algebraic multiplicity increases while their geometric
multiplicity stays equal to one). But such cases are ruled out when one deals with holomorphic semigroups, which
is the reason we consider these semigroups in this paper.

Our ultimate aim in this section is to verify exponential stability. By Theorem 1, in order to prove exponential
stability of a holomorphic semigroup with infinitesimal generatorA, it is sufficient to show thatΣ(A) ⊂ C−.
Hence, in the first part of this section, we give conditions under which theA operators described by (12) generate
holomorphic semigroups. In the second part, we find sufficient conditions which guaranteeΣ(A) ⊂ C−.

Once again, the setup is that of (12) whereε is a small complex scalar. In addition, assume thatA0(k) ∈ Cq×q

is diagonalizable for everyk ∈ R.

Conditions for Sectorial Infinitesimal Generator

To find conditions under whichA in (12) will define a holomorphic semigroup we have to check the condition
(18). Since the Fourier transform preserves norms, (18) is equivalent to checking‖(zI − Â)−1‖ ≤M/|z−α| for
z belonging to some sector ofC. This involves finding the inverse of the operatorzI − Â and then calculating
its norm. Such a computation can be very difficult since(zI − Â)−1 has the form (5) [also depicted in Figure 1
(right)], i.e., it has an infinite number of impulse sheets. On the other hand, finding‖(zI − Âo)−1‖ is very easy,
due to the diagonal structure of̂Ao. Indeed‖(zI − Âo)−1‖ = supk∈R ‖(zI −A0(k))−1‖.

Thus to establish conditions forA to be sectorial, we again use perturbation theory. We first find conditions
under whichAo is sectorial. We then show thatA = Ao + εE remains sectorial ifE is ‘weaker’ thanAo in a
certain sense we will describe, and ifε is small enough.

In the next theorem we present a condition for a spatially invariantAo with symbolA0(k) to be sectorial.
Theorem 3:Let A0(k) be diagonalizable for everyk ∈ R, and letU(k) be the transformation that diagonalizes

A0(k), i.e.,A0(k) = U(k) Λ(k)U−1(k) with Λ(k) diagonal. Letκ(k) := ‖U(k)‖ ‖U−1(k)‖ denote the condition
number ofU(k). If supk∈R κ(k) < ∞, and for everyk ∈ R the resolvent setρ(A0(k)) contains a sector of the
complex plane| arg(z − α) | < π

2 + γ with γ > 0 andα ∈ R both independent ofk, thenAo is sectorial.
Proof: See Appendix.

This theorem has a particularly simple interpretation whenA0( · ) is scalar. In this caseκ(U(k)) = 1 for all
k ∈ R. Now sinceA0( · ) traces a curve in the complex plane, by Theorem (3) if this curve stays outside some
sector| arg(z − α) | ≤ π

2 + γ, γ > 0, of the complex plane thenAo is sectorial.
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The following theorem is from [11]. It uses the notion ofrelative boundedness[9] of one unbounded operator
with respect to another unbounded operator.

Theorem 4:SupposeAo ∈H (γ, α,M) andE = BoF Co is relatively bounded with respect toAo so that

‖E ψ‖ ≤ a ‖ψ‖ + b ‖Aoψ‖, ψ ∈ D , (34)

with 0 ≤ a <∞ and0 ≤ b |ε| < 1/(1 +M). ThenA = Ao + εE is a sectorial operator.
This theorem says that ifAo is sectorial, then so isA = Ao + εE if E is weaker thanAo in the sense of (34)

and if |ε| is small enough. Notice that at this point, condition (34) can not be reduced to a condition in terms
of Fourier symbols (i.e. a condition that can be checked pointwise ink) as in Theorem 3. This is becauseE is
not spatially invariant. But once the exact form of the operatorsBo andCo is known, (34)can be simplified to
a condition on the symbols ofAo, Bo andCo. Let us clarify this statement with the aid of an example.

Example 7:Consider the periodic PDE

∂t ψ = −(∂2
x + κ2)2 ψ − c ψ + ε ∂x cos(Ωx)ψ + u

y = ψ.

It is easy to see thatAo = −(∂2
x + κ2)2 − c, Bo = ∂x andCo = δ(x) (the identity convolution operator). By

formal differentiation we have

E ψ = ∂x cos(Ωx)ψ = − Ω sin(Ωx)ψ + cos(Ωx) ∂x ψ.

Using the triangle inequality and‖ sin(Ωx)‖ = ‖ cos(Ωx)‖ = 1 we have

‖E ψ‖ ≤ |Ω| ‖ψ‖ + ‖∂x ψ‖. (35)

Thus we have effectively ‘commuted out’ the (bounded) spatially periodic operator inE, and are left with only
spatially invariant operators on the right of (35). Hence, after applying a Fourier transfomation to the right side
of (35), a sufficient condition for (34) to hold is that

|Ω| + |k| ≤ a + b |(k2 − κ2)2 + c|, k ∈ R,

which can be shown to be satisfied for large enougha > |Ω| andb > 0.
Remark 10:The above example makes clear the notion ofE being ‘weaker’ thanAo that we mentioned at

the beginning of this subsection. If in Example 7 we hadBo = ∂ν
x andCo = ∂µ

x andν + µ = 5, thenE would
contain a5th order derivative, whereas the highest order of∂x in Ao is 4. This would mean that (34) can not be
satisfied for any choice ofa andb.

Conditions for Infinitesimal Generator to have Spectrum inC−

The final step in establishing exponential stability is to show thatΣ(A) ⊂ C−. Unfortunately it is in general
very difficult to find the spectrum of an infinite-dimensional operator. Thus we proceed as follows. We consider
the (block) diagonal operatorsAo

θ, θ ∈ [0,Ω). This allows us to extend Geršgorin-type methods (existing for
finite-dimensional matrices) to find bounds on the location ofΣ(Aθ), Aθ = Ao

θ + ε Eθ. In turn, we use this to
find conditions under whichΣ(Aθ) ⊂ C−, and thusΣ(A) ⊂ C−.

In locating the spectrum of a finite-dimensional matrixT ∈ Cq×q, the theory of Geřsgorin circles [18] provides
us with a region of the complex plane that contains the eigenvalues ofT . This region is composed of the union
of q disks, the centers of which are the diagonal elements ofT , and their radii depend on the magnitude of the
off-diagonal elements [18]. This theory has also been extended to the case of finite-dimensional block matrices
(i.e., matrices whose elements are themselves matrices) in [19]. Next, we further extend this theory to include
bi-infinite (block) matricesAθ.

For the operatorA = Ao + εE, takeBk to be the set of complex numbersz that satisfy

σmin(zI −A0(k)) ≤ |ε|
(
‖A−1(k)‖+ ‖A1(k)‖

)
, (36)

whereσmin(zI −A0(k)) denotes the smallest singular value of the matrixzI −A0(k).
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Fig. 9. Left: TheBθn regions viewed in the ‘complex-plane× spatial-frequency’ space (the disks are parallel to the complex plane).
Center:Σ(Aθ) is contained inside the union of the regionsBθn . Right: The bold line showsΣ(Ao) and the dotted region containsΣ(A),
A = Ao + εE.

Lemma 5:For everyθ we haveΣ(Aθ) ⊆ Sθ, where

Sθ =
⋃
n∈Z

Bθn .

Proof: See Appendix.
Example 8:Let us consider the periodic PDE [5]

∂t ψ = −(∂2
x + κ2)2 ψ − c ψ + ε cos(Ωx) ∂x ψ + u

y = ψ. (37)

We have

A0(k) = −(k2 − κ2)2 − c, Bo(k) = 1, Co(k) = jk, B(k) = 1, C(k) = 1, L =
1
2
.

From (15),A1(k) = j
2 (k − Ω), A−1(k) = j

2 (k + Ω), and thus‖A−1(k)‖ + ‖A1(k)‖ = 1
2 (|k − Ω| + |k + Ω|).

Hence (36) leads to

σmin(zI −A0(k)) = |zI −A0(k)| ≤
|ε|
2

(|k − Ω|+ |k + Ω|) =
{

Ω |ε| |k| ≤ Ω
|k| |ε| |k| ≥ Ω ,

which means that the setSθ is composed of the union of disks with centers atA0(θn) and radii |ε|2 (|θn − Ω|+
|θn + Ω|). This is nothing but an extension of the classical Geršgorin disks to bi-infinite matrices. Figure 9 (left
& center) showSθ in the complex-plane× spatial-frequency space and inC respectively.5

Remark 11:The set

Σε(M) := {z ∈ C | σmin(zI −M) ≤ ε} (38)

≡ {z ∈ C | ‖(zI −M)ϕ‖ ≤ ε for some‖ϕ‖ = 1}
≡ {z ∈ C | z ∈ Σp(M + Z) for some‖Z‖ ≤ ε}

is called theε-pseudospectrumof the matrixM [20]. ClearlyΣε′(M) ⊆ Σε(M) if ε′ ≤ ε, andΣε(M) = Σp(M)
for ε = 0. The pseudospectrum is composed of small sets around the eigenvalues ofM . For instance ifM has
simple eigenvalues, then for small enough values ofε the pseudospectrum consists of disjoint compact and convex
neighborhoods of each eigenvalue [21].

5We would like to point out that Figure 9 (left) is technically incorrect; once the spatially invariant system is perturbed by a spatially
periodic perturbation it is no longer spatially invariant and thus can not be represented by a Fourier symbol. Hence its spectrum can no longer
be demonstrated in the complex-plane× spatial-frequency space. Figure 9 (center) demonstrates the correct representation of the Geršgorin
disks forAθ .
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Remark 12:Comparing (38) and the definition ofBk in (36), it is clear thatBk = Σε(A0(k)) with ε =
|ε|

(
‖A−1(k)‖+ ‖A1(k)‖

)
. Thus for everyk ∈ R, (36) defines a closed region ofC that includes the eigenvalues

of A0(k).
We now employ Lemma 5 to determine whetherΣ(A) resides completely insideC−, as needed to assess system

stability. TakeDε to be the closed disk of radiusε and center at the origin, andBk to be the region described
by (36). Define the sum of sets byU1 + U2 = {z | z = z1 + z2, z1 ∈ U1, z1 ∈ U1}. Also, for everyk ∈ R let
λmax(k) represent the eigenvalue ofA0(k) with the maximum real part, and letκ(k) be defined as in Theorem 3.

Theorem 6:For everyk, Bk is contained insideΣp(A0(k)) + Dr(k) with

r(k) = |ε|
(
‖A−1(k)‖+ ‖A1(k)‖

)
κ(k).

In particular, ifΣ(Ao) ⊂ C− and
r(k) < |Re(λmax(k))|+ β (39)

for everyk ∈ R and someβ < 0 independent ofk, thenΣ(A) ⊂ C−.
Proof: See Appendix.

Example 9:Once again we use the scalar system of Example 8.κ(k) = 1 sinceA0(k) is scalar,|Re(λmax(k))| =
|(k2 − κ2)2 + c|, and

‖A−1(k)‖+ ‖A1(k)‖ =
1
2

(|k − Ω|+ |k + Ω|).

Thus condition (39) becomes

|ε|
2

(|k − Ω|+ |k + Ω|) < |(k2 − κ2)2 + c|+ β.

If this condition is satisfied for someβ < 0, the dotted region in Figure 9 (right) will remain insideC− and thus
Σ(A) ⊂ C−.

To recap, to assess exponential stability we first find sufficient conditions onA such that it belongs to the class
of operators for which the spectrum-determined growth condition holds. These are conditions under whichA is
sectorial. We then find sufficient conditions forA to haveC− spectrum. We do this via an extension of Geršgorin
circles to bi-infinite (block) matrices.

VIII. C ONCLUSIONS ANDFUTURE WORK

We use perturbation analysis to find a computationally efficient way of revealing trends in theH2-norm of
spatially periodic systems. We show that for certain classes of systems, the periodicity can be chosen so as to
increase theH2-norm or induce parametric resonance. An application of this would be in mixing problems. It
is also shown that theH2-norm can be made to decrease for an appropriate choice of the frequency of the
perturbation. This would be the desired scenario in the design of the body of aircraft. We demonstrate that for
certain scalar systems, the value of the spatial period that achieves the desired increase/decrease of theH2-norm
can be characterized exactly based on the description of the nominal system.

The methods presented here can also be used in systems with many spatial directions. For example, consider
the PDE

ψt = ψyy + ψxx + cψ + ε cos(Ωx)ψ

with y ∈ [−1, 1] andx ∈ R. To put this system into the developed framework one would only have to perform a
discrete approximation of the operator∂2

y with the appropriate boundary conditions.
We also study the problem of checking the exponential stability of a spatially periodic system. We do this

by (i) finding conditions under which theA-operator is sectorial (i.e., generates a holomorphic semigroup) and
thus satisfies the spectrum-determined growth condition, and (ii) deriving conditions which guarantee thatA has
spectrum contained inside the open left-half of the complex plane.

Future research in this direction would include an exact (analytical) characterization of the frequencies for
which theH2-norm is most increased/decreased for the general case of matrix-valuedÂ( · ). The perturbation
methods presented here could also be generalized to bi-infinite Sylvester equations which arise frequently in fluids
problems.
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IX. A PPENDIX

Proof of Theorem 3

It is shown in [22] that a sufficient condition forAo to be sectorial is thatρ(Ao) contain some right half plane
{z ∈ C |Re(z) ≥ µ}, and

‖z(zI −Ao)−1‖ ≤M for Re(z) ≥ µ,

for someµ ≥ 0 andM ≥ 1.
Now sinceA0(k) ∈ Cq×q has simple eigenvalues for everyk, there exists a matrixU(k) such thatA0(k) =

U(k) Λ(k)U−1(k) with Λ(k) a diagonal matrix. Letλi(k), i = 1, · · · , q denote the diagonal elements ofΛ(k).
Clearly these are also the eigenvalues ofA0(k). Thus we have

‖z(zI −Ao)−1‖ ≤ sup
k∈R

(
‖z(zI −A0(k))−1‖

)
≤ sup

k∈R

(
‖U(k)‖ ‖U−1(k)‖ ‖z(zI − Λ(k))−1‖

)
= sup

k∈R

(
κ(k)

|z|
dist[z,Σp(A0(k))]

)
≤ κmax sup

k∈R

( |z|
dist[z,Σp(A0(k))]

)
,

whereκmax := supk∈R κ(k).
Let us now choose the positive scalarM ′ = (1 + κmax)M , M > 1, and consider for a givenk the region of

the complex plane where

κmax
|z|

dist[z,Σp(A0(k))]
≥ M ′.

This region (which contains the eigenvaluesλi(k)) is contained inside the union of the circles

κmax
|z|

|z − λi(k)|
≥ M ′, i = 1, · · · , q,

which are themselves contained inside the larger circles

|z − λi(k)| ≤
|λi(k)|
M

, i = 1, · · · , q. (A1)

Notice that (A1) describes circles whose radii increase like|λi(k)|/M , M > 1, as their centersλi(k) become
distant from the origin. Clearly a sufficient condition for these circles to belong to some open half plane{z ∈
C |Re(z) < µ} for all k ∈ R and large enoughM is that Σp(A0(k)), k ∈ R, reside outside some sector
| arg(z − α) | ≤ π

2 + γ, γ > 0, of the complex plane.
Finally, if the circles (A1) are contained in some open half plane{z ∈ C |Re(z) < µ} for all k ∈ R, then for

Re(z) ≥ µ, z ∈ ρ(A0(k)) and we have

κmax sup
k∈R

( |z|
dist[z,Σp(A0(k))]

)
≤ M

and thus‖z(zI −Ao)−1‖ ≤M for Re(z) ≥ µ.

Proof of Lemma 5

We useΠN T ΠN to denote the(2N + 1) × (2N + 1) [block] truncation of an operatorT on `2, whereΠN

is the projection defined by

diag
{
· · · , 0, I, · · ·

center
↓
, I, · · · , I︸ ︷︷ ︸

2N+1 times

, 0, · · ·
}
,
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where I is the identity matrix. Notice thatΠN T ΠN is still an operator oǹ 2; it made from the bi-infinite
T by replacing all entries outside the center(2N +1)× (2N +1) block with zeros. We now form the finite-
dimensional matrixΠN Aθ ΠN

∣∣
ΠN `2

by restrictingΠN Aθ ΠN to the finite-dimensional spaceΠN`
2. Clearly

ΠN Aθ ΠN

∣∣
ΠN `2

has pure point spectrum. Hence using a generalized form of the Geršgorin Circle Theorem [19]
for finite-dimensional (block) matrices, we conclude that

Σ
(
ΠN Aθ ΠN

∣∣
ΠN `2

)
⊂

⋃
|n|≤N

Bθn ⊆
⋃
n∈Z

Bθn

whereBθn are regions ofC defined by (36). Since this holds for allN ≥ 0, we haveΣ(Aθ) ⊆ Sθ.

Proof of Theorem 6

If U(k) diagonalizesA0(k), A0(k) = U(k) Λ(k)U−1(k), andκ(k) = ‖U(k)‖ ‖U−1(k)‖ denotes the condition
number ofU(k), then from [23] the pseudospectrum ofA0(k) satisfies

Σp(A0(k)) + Dε ⊆ Σε(A0(k)) ⊆ Σp(A0(k)) + Dεκ(k) (A2)

for all ε ≥ 0. Thus the first statement of the Theorem follows immediately from (A2) and the fact thatBk =
Σε(A0(k)) with ε = |ε|

(
‖A−1(k)‖+ ‖A1(k)‖

)
[see Remark 12]. To prove the second statement, letC−β denote

all complex numbers with real part less thanβ ∈ R. It follows from Σ(Ao) ⊂ C− that Σ(Ao
θ) ⊂ C− for every

θ. If (39) holds then
Bθn ⊆ Σp(A0(θn)) + Dr(θn) ⊂ C−β

for everyn ∈ Z, and from Lemma 5 we haveΣ(Aθ) ⊆ Sθ =
⋃

n∈Z Bθn ⊂ C−β′ for someβ < β′ < 0 and every
θ. ThusΣ(A) ⊂ C−.

Interpretation of Imaginary States

It was shown above that one can decrease theH2-norm of certain systems by choosing the perturbation
amplitudeA1 to be purely imaginary (or, in general, skew-symmetric). This would yield a perturbed system that
can in general have states with nonzero imaginary parts. One could then ask the physical interpretation of such
a system.

For any operatorAp and functionψ one can write

Ap = Ar + jAi, Ar, Ai ∈ Rn×n,

ψ = ψr + jψi, ψr, ψi ∈ Rn.

Then the system equations can be written as

∂t(ψr + jψi) = (Ar + jAi)(ψr + jψi)
m{

∂tψr = Arψr −Aiψi

∂tψi = Arψi +Aiψr

m

∂t

[
ψr

ψi

]
=

[
Ar −Ai

Ai Ar

] [
ψr

ψi

]
.

Clearly the state dimension is twice that of the original system with imaginary coefficients, but now
[
ψr
ψi

]
∈ R2n.

Let us give a simple example. Assume the heat equation, withA1 = jε, ε ∈ R, i.e.Ap = ∂2
x− c+ jε cos(Ωx).

ThenAr = A0 = ∂2
x − c, Ai = A1 = jε cos(Ωx), and thus

∂t

»
ψr

ψi

–
=

»
∂2

x − c −ε cos(Ωx)
ε cos(Ωx) ∂2

x − c

– »
ψr

ψi

–
=

„»
∂2

x − c 0
0 ∂2

x − c

–
+ ε cos(Ωx)

»
0 −1
1 0

–« »
ψr

ψi

–
which describes two identical systems coupled through the periodic perturbation.
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